Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Reșat Ustabaș, ${ }^{\text {a }}$ Ufukc Çoruh, ${ }^{\text {b }}$ *
Kemal Sancak, ${ }^{\text {c }}$ Mustafa Er, ${ }^{\text {c }}$
Yasemin Ünver ${ }^{c}$ and Metin Yavuz ${ }^{\text {d }}$
${ }^{\text {a }}$ Department of Physics, Graduate School of Natural and Applied Sciences, Ondokuz Mayıs University, Kurupelit-55139, Samsun, Turkey,
${ }^{\mathbf{b}}$ Department of Computer Education and Instructional Science, Educational Faculty, Ondokuz Mayıs University, 55200-AtakumSamsun, Turkey, ' Department of Chemistry, Faculty of Arts and Sciences, Karadeniz Teknik University, 61080-Trabzon, Turkey, and
department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University,
Kurupelit-55139, Samsun, Turkey
Correspondence e-mail: ucoruh@hotmail.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.048$
$w R$ factor $=0.107$
Data-to-parameter ratio $=20.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

2-[2-(Cyanomethoxy)phenoxy]acetonitrile

The title compound, $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$, consisting of a benzene ring with two $\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CN}$ ortho substituents, has approximately C_{2} symmetry. The supramolecular structure of the compound is determined by two hydrogen bonds and two $\pi-\pi$ stacking interactions.

Comment

Nitriles are close relatives of azoles and hydrazones and are parent compounds for the preparation of various functional organic materials having triazole, imidazole or thidiazole moieties (İkizler \& Sancak, 1992, 1995, 1998). The synthesis of new azoles has been a very active area of research and one important aspect has been the incorporation of functional units, such as the cyanomethyl group in ravuconazol (Urbina et al., 2001). Nitrile derivatives have found many industrial applications. For example, phthalonitriles have been used as starting materials for phthalocyanines (Jin et al., 1994), which are important components for dyes, pigments, gas sensors, optical limiters and liquid crystals, and which are also used in medicine, as singlet oxygen photosensitisers for photodynamic therapy (PDT; Brewis et al., 2003). Porphyrins are photosensitizers which are currently the subject of active research effort for possible use in PDT, because of their ability to localize in malignant tumours and to generate potent reactive species on excitation (Moan \& Berg, 1992; Henderson \& Dougherty, 1992; Levy, 1994; Jori, 1996). Some phthalocyanines have been used in the petroleum industry as catalysts, for the oxidation of sulfur compounds in the xerographic double layers of laser printers and copying machines, and as active materials in writable data-storage disks (Dandliker et al., 1995). Against this background, we now report the synthesis and crystal structure analysis of the title compound, 2-[2-(cyanomethoxy)phenoxy]acetonitrile, (II).

Compound (II) is composed of a benzene ring substituted by two $\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CN}$ groups at atoms C 1 and C 6 (Fig. 1). As can be seen in Fig. 1, the molecule has approximately C_{2} symmetry, with a twofold axis passing through the mid-points of the $\mathrm{C} 3-\mathrm{C} 4$ and $\mathrm{C} 1-\mathrm{C} 6$ bonds. The $\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{N}$ moieties

Received 23 March 2004
Accepted 4 May 2004
Online 8 May 2004

Figure 1

A view of the molecule of (II), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 2
The hydrogen-bonding network (dashed lines) observed in (II).
are each almost linear, with $\mathrm{C} 61-\mathrm{C} 62 \equiv \mathrm{~N} 2$ and $\mathrm{C} 11-$ $\mathrm{C} 12 \equiv \mathrm{~N} 1$ angles of 178.22 (21) and $177.81(21)^{\circ}$, respectively. The $\mathrm{C} 12 \equiv \mathrm{~N} 1$ and $\mathrm{C} 62 \equiv \mathrm{~N} 2$ bond distances are 1.115 (3) and 1.120 (3) \AA, respectively, similar to values reported in the literature (Çoruh et al., 2002, 2003; Öztürk et al., 1999; Subbiah Pandi et al., 2002). The benzene ring is essentially planar, with a maximum deviation of 0.004 (1) \AA for atom C6.

As can be seen from the packing diagram (Fig. 3), the molecules of (II) extend parallel to the c axis and are stacked along the a axis. In addition to dipole-dipole and van der Waals interactions, the crystal structure of (II) is stabilized by intermolecular $\mathrm{C} 61-\mathrm{H} 61 A \cdots \mathrm{~N} 1^{\mathrm{i}}$ and $\mathrm{C} 61-\mathrm{H} 61 B \cdots \mathrm{O} 1^{\mathrm{ii}}$ hydrogen bonds (Fig. 2; symmetry codes as in Table 2) and two $\pi-\pi$ stacking interactions. These $\pi-\pi$ stacking interactions involve the benzene ring $R 1$ at (x, y, z) and the symmetryrelated rings $R 2$ at $\left(x-\frac{1}{2}, \frac{1}{2}-y, z\right)$ and $R 3$ at $\left(\frac{1}{2}+x, \frac{1}{2}-y, z\right)$. The distance between the centroids of rings $R 1$ and $R 2$ is 3.897 (1) \AA, and that between the centroids of rings $R 1$ and $R 3$ is 3.877 (1) \AA.

Experimental

A mixture of catechol, (I) $(1.01 \mathrm{~g}, 0.01 \mathrm{~mol})$, dissolved in acetone $(300 \mathrm{ml})$, and powdered potassium carbonate ($4.10 \mathrm{~g}, 0.03 \mathrm{~mol}$) was stirred vigorously while heating at gentle reflux for 30 min . The reaction mixture was then cooled, chloroacetonitrile $(1.50 \mathrm{~g}$, 0.02 mol) was added and the mixture was refluxed with stirring for 20 h . After cooling, the reaction mixture was filtered, the filtrate was

Figure 3
A packing diagram for (II), viewed along the [100] axis of the orthorhombic cell.
removed under reduced pressure and the residue was dried over CaCl_{2}. The solid residue was then recrystallized from acetone-carbon tetrachloride (1:1) to give (II) (yield $1.291 \mathrm{~g}, 74.02 \%$; m.p. 355356 K). Spectroscopic analysis: IR ($\mathrm{KBr}, v, \mathrm{~cm}^{-1}$): 3067 and 2959 $(\mathrm{C}-\mathrm{H}), 2246(\mathrm{C} \equiv \mathrm{N}), 1596(\mathrm{C}=\mathrm{C}), 1113(\mathrm{C}-\mathrm{O}-\mathrm{C}), 744$ (phenyl ring); ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, δ, p.p.m.): $5.18\left(s, 4 \mathrm{H}, 2 \mathrm{O}-\mathrm{CH}_{2}\right), 7.10-$ $7.22\left(d, 4 \mathrm{H}, \mathrm{CH}_{\text {phenyl }}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}, δ, p.p.m.): $54.51(2 \mathrm{O}-$ CH_{2}), $115.31\left(2 \mathrm{C} \equiv \mathrm{N}\right.$), 116.73 (phenyl $\mathrm{q}_{\text {quaternary }} \mathrm{C} 1$ and C 2), 123.45 (phenyl, C3 and C4), 146.40 (phenyl, C5 and C6).

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=188.18$
Orthorhombic, Pcab
$a=7.4940$ (12) £
$b=13.9150$ (11) \AA
$c=18.3770(13) \AA$
$V=1916.34(1) \AA^{3}$
$Z=8$
$D_{x}=1.305 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 17120 reflections
$\theta=2-26^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.35 \times 0.30 \times 0.20 \mathrm{~mm}$

Data collection

Stoe IPDS 2 diffractometer ω scans
Absorption correction: none 17120 measured reflections 2592 independent reflections 1014 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.107$
$S=0.73$
2592 reflections
127 parameters

$$
\begin{aligned}
& R_{\text {int }}=0.100 \\
& \theta_{\max }=29.3^{\circ} \\
& h=-9 \rightarrow 10 \\
& k=-19 \rightarrow 19 \\
& l=-25 \rightarrow 25
\end{aligned}
$$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.049 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.29 \mathrm{e}^{\circ}{ }^{-3}$
$\Delta \rho_{\max }=0.29 \mathrm{e}^{-3} \mathrm{e}_{\text {min }}=-0.24 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

O1-C1	$1.3785(18)$	$\mathrm{N} 1-\mathrm{C} 12$	$1.115(3)$
$\mathrm{O} 1-\mathrm{C} 11$	$1.4107(16)$	$\mathrm{N} 2-\mathrm{C} 62$	$1.120(3)$
$\mathrm{O} 2-\mathrm{C} 6$	$1.3748(18)$	$\mathrm{C} 1-\mathrm{C} 6$	$1.3942(18)$
$\mathrm{O} 2-\mathrm{C} 61$	$1.4139(16)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.365(3)$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 11$	$118.73(12)$	$\mathrm{O} 2-\mathrm{C} 6-\mathrm{C} 5$	$125.36(12)$
$\mathrm{C} 6-\mathrm{O} 2-\mathrm{C} 61$	$117.98(11)$	$\mathrm{O} 1-\mathrm{C} 11-\mathrm{C} 12$	$110.15(13)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$126.19(13)$	$\mathrm{N} 1-\mathrm{C} 12-\mathrm{C} 11$	$177.8(2)$
O1-C1-C6	$113.99(13)$	$\mathrm{O} 2-\mathrm{C} 61-\mathrm{C} 62$	$110.78(13)$
O2-C6-C1	$114.31(13)$	$\mathrm{N} 2-\mathrm{C} 62-\mathrm{C} 61$	$178.2(2)$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 61-\mathrm{H} 61 A \cdots \mathrm{~N}^{\mathrm{i}}$	0.97	2.61	$3.184(3)$	118
$\mathrm{C}^{1 \mathrm{H}}-\mathrm{H} 61 B \cdots 1^{1 i}$	0.97	2.52	$3.2871(19)$	135

Symmetry codes: (i) $\frac{1}{2}-x, y, z-\frac{1}{2}$; (ii) $1-x,-y,-z$.
H atoms were positioned geometrically and refined using a riding model, with an aromatic $\mathrm{C}-\mathrm{H}$ distance of $0.93 \AA$ and a methylene $\mathrm{C}-\mathrm{H}$ distance of $0.97 \AA$. The $U_{\text {iso }}(\mathrm{H})$ values were constrained to be $1.2 U_{\text {eq }}$ of the carrier atom.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97, WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

The authors thank the Turkish Government and the University of Ondokuz Mayss for research grant F309.

References

Brewis, M., Helliwell, M. \& McKeown, N. B. (2003). Tetrahedron, 59, 38633872.

Çoruh, U., Nesuhi, A., Ag̃ar, E., Vázquez-López, E. M. \& Erdönmez, A. (2002). Acta Cryst. E58, o896-o897.

Çoruh, U., Ustabaş, R., Yılmaz, İ. \& Yavuz, M. (2003). Acta Cryst. E59, o1938o1940.
Dandliker, R., Gray, S., Clube, F., Herzig, H. P. \& Volkel, R. (1995). Microelectron. Eng. 27, 205-211.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Henderson, B. W. \& Dougherty, T. J. (1992). Photochem. Photobiol. 55, 145157.

İkizler, A. A. \& Sancak, K. (1992). Monatsh. Chem. 123, 257-263.
İkizler, A. A. \& Sancak, K. (1995). Collect. Czech. Chem. Commun. 60, 903909.

İkizler, A. A. \& Sancak, K. (1998). Rev. Roum. Chim. 43, 133-138.
Jin, Z., Nolan, K., McArthur, C. R., Lever, A. B. P. \& Leznoff, C. C. (1994). J. Organomet. Chem. 468, 205-212.
Jori, G. (1996). J. Photochem. Photobiol. B, 36, 87-93.
Levy, J. G. (1994). Semin. Oncol. 21, 4-10.
Moan, J. \& Berg, K. (1992). Photochem. Photobiol. 55, 931-948.
Öztürk, S., Işık, Ş., Fun, H.-K., Kendi, E., Ag̃ar, E., Şaşmaz, S. \& İbrahim, A. R. (1999). Acta Cryst. C55, 395-397.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Subbiah Pandi, A., Rajakannan, V., Velmurugan, D., Parvez, M., Kim, M.-J., Senthilvelan, A. \& Narasinga Rao, S. (2002). Acta Cryst. C58, o164-o167.
Urbina, J. A., Payares, G., Sonja, A. R. L. \& Pomanha, J. (2001). Int. J. Antimicrob. Agents, 21, 27-38.

